**Q1.**A mass M hangs in equilibrium on a spring. M is made to oscillate about the equilibrium position by pulling it down 10 cm and releasing it. The time for M to travel back to the equilibrium position for the first time is 0.50 s. Which line, A to D, is correct for these oscillations?

|             | amplitude/cm | period/s |
|-------------|--------------|----------|
| <b>A</b> 10 |              | 1.0      |
| В           | 10           | 2.0      |
| С           | 20           | 2.0      |
| D           | 20           | 1.0      |

(Total 1 mark)

**Q2.**Which one of the following statements is true when an object performs simple harmonic motion about a central point O?

- **A** The acceleration is always away from O.
- **B** The acceleration and velocity are always in opposite directions.
- **C** The acceleration and the displacement from O are always in the same direction.
- **D** The graph of acceleration against displacement is a straight line.

| <b>Q3.</b> A  |   | f mass 40 kg stands on a roundabout 2.0 m from the vertical axis as the roundabout rot<br>ormly with a period of 3.0 s. The horizontal force acting on the girl is approximately | ates           |
|---------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|               | Α | zero.                                                                                                                                                                            |                |
|               | В | $3.5 \times 10^2 \text{ N}.$                                                                                                                                                     |                |
|               | С | $7.2 \times 10^2 \text{ N}.$                                                                                                                                                     |                |
|               | D | $2.8 \times 10^4$ N.                                                                                                                                                             | (Total 1 mark) |
| <b>Q4.</b> Fc |   | erticle moving in a circle with uniform speed, which one of the following statements is rrect?  The velocity of the particle is constant.                                        |                |
|               | В | The force on the particle is always perpendicular to the velocity of the particle.                                                                                               |                |
|               | С | There is no displacement of the particle in the direction of the force.                                                                                                          |                |
|               | D | The kinetic energy of the particle is constant.                                                                                                                                  | (Total 1 mark) |
|               |   |                                                                                                                                                                                  |                |

**Q5.**A simple pendulum and a mass-spring system are taken to the Moon, where the gravitational field strength is less than on Earth. Which line, **A** to **D**, correctly describes the change, if any, in the period when compared with its value on Earth?

|   | period of pendulum | period of mass–spring system |
|---|--------------------|------------------------------|
| Α | decrease           | decrease                     |
| В | increase           | increase                     |
| С | no change          | decrease                     |
| D | increase           | no change                    |

(Total 1 mark)

**Q6.**A body moves with simple harmonic motion of amplitude A and frequency  $\frac{b}{2\pi}$ .

What is the magnitude of the acceleration when the body is at maximum displacement?

- **A** zero
- $\mathbf{B} \quad 4\pi^2 A b^2$
- $\mathbf{C}$   $Ab^2$
- $\frac{4\pi^2 A}{b^2}$

Q7.



A ball of mass m, which is fixed to the end of a light string of length I, is released from rest at X. It swings in a circular path, passing through the lowest point Y at speed v. If the tension in the string at Y is T, which one of the following equations represents a correct application of Newton v laws of motion to the ball at Y?

$$A \qquad T = \frac{mv^2}{l} - mg$$

$$B \qquad T - mg = \frac{mv^2}{l}$$

c 
$$mg - T = \frac{mv^2}{l}$$

$$D T + \frac{mv^2}{l} = mg$$

| <b>Q8.</b> A |   | $_{\prime}$ is in simple harmonic motion of amplitude 0.50 m and period $4\pi$ seconds. What is the he body when the displacement of the body is 0.30 m? | speed          |
|--------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|              | Α | 0.10ms <sup>-1</sup>                                                                                                                                     |                |
|              | В | 0.15ms <sup>-1</sup>                                                                                                                                     |                |
|              | С | 0.20 m s <sup>-1</sup>                                                                                                                                   |                |
|              | D | 0.40 m s <sup>-1</sup>                                                                                                                                   | (Total 1 mark) |
|              |   |                                                                                                                                                          |                |
| <b>Q9.</b> W |   | one of the following statements always applies to a damping force acting on a vibrating em?                                                              |                |
|              | Α | It is in the same direction as the acceleration.                                                                                                         |                |
|              | В | It is in the same direction as the displacement.                                                                                                         |                |
|              | С | It is in the opposite direction to the velocity.                                                                                                         |                |
|              | D | It is proportional to the displacement.                                                                                                                  | (Total 1 mark) |
|              |   |                                                                                                                                                          |                |
|              |   |                                                                                                                                                          |                |
|              |   |                                                                                                                                                          |                |
|              |   |                                                                                                                                                          |                |
|              |   |                                                                                                                                                          |                |
|              |   |                                                                                                                                                          |                |

Q10.



A simple pendulum consists of a bob of mass m on the end of a light string of length I. The bob is released from rest at X when the string is horizontal. When the bob passes through Y its velocity is v and the tension in the string is T. Which one of the following equations gives the correct value of T?

- A T = mg
- $B T = \frac{mv^2}{l}$
- $C T + mg = \frac{mv^2}{l}$
- $D \quad T mg = \frac{mv^2}{l}$

- **Q11.**A particle of mass m executes simple harmonic motion in a straight line with amplitude A and frequency f. Which one of the following expressions represents the total energy of the particle?
  - A  $2 \pi^2 mfA^2$
  - **B**  $2 \pi^2 mf^2 A^2$
  - **C**  $4 \pi^2 m^2 f^2 A$
  - **D**  $4 \pi^2 mf^2 A^2$

(Total 1 mark)

**Q12.**A simple pendulum and a mass-spring system both have the same time period T at the surface of the Earth. If taken to another planet where the acceleration due to gravity was half that on Earth, which line, **A-D**, in the table gives correctly the new periods?

|   | simple pendulum      | mass-spring          |
|---|----------------------|----------------------|
| Α | τ√2                  | Τ                    |
| В | $\frac{T}{\sqrt{2}}$ | Т                    |
| С | τ√2                  | $\frac{T}{\sqrt{2}}$ |
| D | $\frac{T}{\sqrt{2}}$ | <i>T</i> √2          |

- **Q13.**A body undergoes forced oscillation. Which one of the following will **not** be increasedby increasing the amplitude of the oscillatory driving force?
  - A the amplitude of the driven oscillation
  - **B** the energy of the driven oscillation
  - **C** the frequency of the driven oscillation
  - **D** the power required to maintain the driven oscillation

(Total 1 mark)

- **Q14.**Which one of the following statements is **not** true for a body vibrating in simple harmonic motion when damping is present?
  - **A** The damping force is always in the opposite direction to the velocity.
  - **B** The damping force is always in the opposite direction to the acceleration.
  - **C** The presence of damping gradually reduces the maximum potential energy of the system.
  - **D** The presence of damping gradually reduces the maximum kinetic energy of the system.

(Total 1 mark)

**Q15.**For which of the following relationships is the quantity *y* related to the quantity *x* by the

$$x \propto \frac{1}{y}$$
 relationship

|   | Х                                    | у                                         |
|---|--------------------------------------|-------------------------------------------|
| Α | energy stored in a spring            | extension of the spring                   |
| В | gravitational field strength         | distance from a point mass                |
| С | de Broglie wavelength of an electron | momentum of the electron                  |
| D | period of a mass-spring system       | spring constant (stiffness) of the spring |

**Q16.**The diagrams show the variation of velocity and acceleration with time for a body undergoing simple harmonic motion.



Which one of the following is proportional to the change in momentum of the body during the time covered by the graphs?

- A The area enclosed by the velocity-time graph and the time axis
- **B** The gradient of the velocity-time graph at the point **P**
- **C** The area enclosed by the acceleration-time graph and the time axis
- **D** The gradient of the acceleration-time graph at the point **Q**

**Q17.**A particle is oscillating with simple harmonic motion described by the equation:

$$s = 5 \sin(20\pi t)$$

How long does it take the particle to travel from its position of maximum displacement to its mean position?

- $A = \frac{1}{40}s$
- $B = \frac{1}{20}s$
- $c = \frac{1}{10}s$
- $D = \frac{1}{5}s$

Q18. The diagram shows two pendulums suspended from fire same thread, PQ.



 ${\bf X}$  is a heavy pendulum, the frequency  $f_{\rm x}$  of which can be varied.  ${\bf Y}$  is a lighter pendulum of fixed frequency  $f_{\rm y}$ . As the frequency of oscillation of  ${\bf X}$  is increased by shortening the thread, the amplitude of the oscillation of  ${\bf Y}$  changes.

Which one of the following graphs best represents the relationship between the amplitude  $a_v$  of the oscillation of **Y** and the frequency  $f_v$  of **X**?







